Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Sci Rep ; 12(1): 6496, 2022 04 20.
Article in English | MEDLINE | ID: covidwho-1908257

ABSTRACT

SARS-CoV-2 is a novel betacoronavirus that caused coronavirus disease 2019 and has resulted in millions of deaths worldwide. Novel coronavirus infections in humans have steadily become more common. Understanding antibody responses to SARS-CoV-2, and identifying conserved, cross-reactive epitopes among coronavirus strains could inform the design of vaccines and therapeutics with broad application. Here, we determined that individuals with previous SARS-CoV-2 infection or vaccinated with the Pfizer-BioNTech BNT162b2 vaccine produced antibody responses that cross-reacted with related betacoronaviruses. Moreover, we designed a peptide-conjugate vaccine with a conserved SARS-CoV-2 S2 spike epitope, immunized mice and determined cross-reactive antibody binding to SARS-CoV-2 and other related coronaviruses. This conserved spike epitope also shared sequence homology to proteins in commensal gut microbiota and could prime immune responses in humans. Thus, SARS-CoV-2 conserved epitopes elicit cross-reactive immune responses to both related coronaviruses and host bacteria that could serve as future targets for broad coronavirus therapeutics and vaccines.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Animals , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , Epitopes , Humans , Mice , SARS-CoV-2 , Vaccination
2.
J Infect Dis ; 226(10): 1712-1716, 2022 Nov 11.
Article in English | MEDLINE | ID: covidwho-1901185

ABSTRACT

The SARS-CoV-2 Omicron variant has caused infections among individuals vaccinated or with prior COVID-19, suggesting immune escape. Here, we showed a decrease in binding and surrogate neutralizing antibody responses to the Omicron variant after 2 doses of the Pfizer COVID-19 mRNA vaccine. Individuals recovered from infection before vaccination had higher antibody levels and avidity to the Omicron variant compared to individuals vaccinated without infection. This suggested that COVID-19 infection before vaccination elicited a higher magnitude and affinity antibody response to the Omicron variant, and repeated exposure through infection or vaccine may be required to improve immunity to emerging SARS-CoV-2 variants.


Subject(s)
COVID-19 , Viral Vaccines , Humans , SARS-CoV-2 , Antibody Affinity , COVID-19/prevention & control , Antibodies, Viral , COVID-19 Vaccines , Vaccination , Antibodies, Neutralizing
SELECTION OF CITATIONS
SEARCH DETAIL